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Abstract

A new dynamical core for numerical weather prediction (NWP) based on the spec-
tral element method is presented. This paper represents a departure from previously
published work on solving the atmospheric primitive equations in that the horizontal
operators are all written, discretized, and solved in 3D Cartesian space. The advan-
tages of using Cartesian space are: the pole singularity which plagues the equations in
spherical coordinates disappears; any grid can be used including lat-lon, icosahedral,
hexahedral and adaptive unstructured grids; and the conversion to a semi-Lagrangian
formulation is easily achieved. The main advantage of using the spectral element
method is that the horizontal operators can be approximated by local high-order ele-
ments while scaling efficiently on distributed-memory computers. In order to validate
the 3D global atmospheric spectral element model, we present results for seven test
cases: three barotropic tests which confirm the exponential accuracy of the horizontal
operators and four baroclinic test cases which validate the full 3D primitive hydro-
static equations. These four baroclinic test cases are: the Rossby-Haurwitz wave
number 4, the Held-Suarez test, and the Jablonowski-Williamson balanced initial
state and baroclinic instability tests. Comparisons with four operational NWP and
climate models demonstrate that the spectral element model is at least as accurate as

spectral transform models while scaling linearly on distributed-memory computers.



1 Introduction

Because of the changing trends in high performance computers from large vector ma-
chines to distributed-memory architectures, numerical methods that decompose the
physical domain into smaller pieces have been receiving significant attention. This
new focus on local methods is especially true in the atmospheric sciences where very
large models covering the entire globe are run in time-scales ranging from days (in
numerical weather prediction) to thousands of years (in climate simulations). Fi-
nite difference and finite element methods are two such methods which decompose
the domain locally thereby facilitating their implementation on distributed-memory
computers. However, one of the biggest disadvantages of these methods is that tra-
ditionally they have not been able to compete, in terms of accuracy, with spectral
transform methods which are typically used operationally in numerical weather pre-
diction (NWP) and climate modeling. For example, spectral transform models are
used by the National Center for Environmental Prediction (Sela 1980), the European
Centre for Medium-Range Forecasts (Simmons et al. 1989), the National Center for
Atmospheric Research (Hack et al. 1992), and the U.S. Navy (Hogan and Rosmond
1991).

Spectral element methods combine the local domain decomposition property of
finite element methods with the high-order accuracy of spectral transform methods.
In other words, spectral elements are as local as finite element methods, and thereby
can be used as efficiently on distributed-memory computers while sustaining the same
level of accuracy obtained with spectral transform methods. Spectral element meth-
ods have been used successfully for the shallow water equations on the sphere (Gi-
raldo 2001; Giraldo et al. 2002; Taylor et al. 1997) and have shown to be promising

for ocean and climate modeling (Iskandarani et al. 2002; Loft et al. 2001; Thomas



et al. 2002). These methods are essentially high-order finite element methods where
the grid points are chosen to be the Legendre-Gauss-Lobatto (LGL) points. This
choice of grid points allows for stable high-order interpolations and results in efficient
numerical integration strategies because the LGL points are also used as the quadra-
ture points in the numerical integration required by the weak integral formulation
common to all Galerkin methods.

In this paper we extend the 3D Cartesian spectral element method for the spherical
shallow water equations introduced in Giraldo (2001) to the full 3D primitive hydro-
static equations governing the motion of the atmosphere. This method represents a
radical departure from all previous numerical methods for flow on spherical geometry
in that the horizontal operators are written, discretized, and solved completely in 3D
Cartesian space. By doing so, we avoid the pole singularity problem associated with
the governing equations in spherical coordinates. For a spherical shell, described by
the coordinates (A, ¢), of radius a the divergence of a vector field, F = fj\ + g9, is
given as

V-F =
a.cos ¢

1 a_f n g cos
1)) oo |

At the poles, i.e., ¢ = +m/2, this is a source of numerical problems, caused by the
specific coordinate formulation rather than the nature of the primitive equations and
its solutions. While the use of a local Cartesian coordinate system has been used
to overcome these problems in the past (Taylor et al. 1997) we have, guided by the
results of previous work (Giraldo 2001; Giraldo et al. 2002), chosen to maintain the
Cartesian formulation everywhere.

Therefore, in our formulation the poles are treated as any other point in Cartesian
space. Because the numerical method is constructed independently of the grid, this
then implies that any grid can be used within this framework including: icosahedral,

hexahedral, lat-lon, and adaptive unstructured grids. The option of using adaptive



unstructured grids will facilitate the coupling of this dynamical core with the Naval
Research Laboratory’s (NRL) mesoscale model (Hodur 1997). The independence of
our numerical methodology from the grid also means that we can change the basis
functions from continuous to discontinuous as we showed in Giraldo et al. (2002), or
the elements on which these functions are constructed from quadrilaterals to triangles
(Warburton et al. 2000) which then simplifies the construction of adaptive solutions.
This independence from the grid is not shared by any of the existing and newly
proposed global atmospheric models including the spectral element model in Taylor
et al. (1997), Loft et al. (2001) and Thomas et al. (2002), and the icosahedral model
in Randall et al. (2002). In fact, the formulations of all these models are bounded
on a specific class of grids. Furthermore, the Cartesian formulation simplifies the
addition of semi-Lagrangian schemes. In this paper, we refer to our current model as
Eulerian in order to distinguish it from the semi-Lagrangian version we are currently
testing in other work. In brief, the objective of this paper is to show the feasibility
of the Cartesian spectral element formulation for constructing hydrostatic primitive
equation models that are as accurate as current spectral transform models and more
efficient on distributed-memory computers.

The remainder of the paper is organized as follows. Section 2 contains a description
of the governing equations of motion used in numerical weather prediction models,
along with a detailed definition of the prognostic and diagnostic variables used in
our model. Section 3 contains the description of the numerical approximation of the
equations including: the horizontal, vertical, and temporal discretization methods. In
Sec. 4 we describe the tessellation of the sphere into the quadrilateral elements used by
the spectral element method to construct the local element matrix operations. This
leads directly into Sec. 5 which contains a discussion on the domain decomposition of

the sphere and how it translates into the implementation of the model on distributed-



memory computers using Message-Passing Interface. In Sec. 6 we present the results
for the seven test cases used to validate our model. Finally, in Sec. 7 we summarize

the key findings of this research and discuss the direction of future work.

2 Atmospheric Equations

The dynamics of a hydrostatic atmosphere (i.e., dynamical core) are governed by

%W - (ru) + %W) 0, (1)
%_’:+U.Vu+&g_::—ZCZU—ZZ(mxu)—VqS—cpﬁg—];Vﬂ—uw, (2)
%+u-ve+dg—i=0, (3)

and
g—ji = —c,0 (4)

where the prognostic variables are the surface pressure, 7, the three Cartesian velocity
components, u = (u, v, w), and the potential temperature, #. The diagnostic variables
are the vertical velocity o, pressure p, and geopotential height ¢.

In Eq. (2), a and w are the earth’s radius and angular velocity, and p is a Lagrange
multiplier used to constrain the fluid particles to remain on each spherical shell defined
by the vertical coordinate o; we shall describe the role of the Lagrange multiplier in
detail in Section 3.4.1. The independent variables in this coordinate system are
(z,y, z,0,t) where the triple (z,y, z) represents the grid point on the sphere defined

by the spherical coordinates (A, ¢) and are related by

T = acosAcosp
Yy = asinAcosy
z = asinp.



Thus in Egs. (1), (2), and (3) V is defined as

at constant o.

The surface pressure variable , 7, in the governing equations is defined as

T =DPs — Dt

where p, is the true surface pressure and p; is the pressure at the top of the atmosphere.

The potential temperature 6 is defined as

T
=%

where T is the temperature and P is the Exner function. The Exner function is

-(2)

where r is the air constant %, R, = 287 kgiK is the gas constant of dry air, ¢, =

defined as

1004 kgLK is the specific heat of dry air at constant pressure, and p, = 1000 hPa is

the standard surface pressure. The vertical velocity is defined as 0 = ‘fi—‘; where o is

given by

which yields a value of 0 at the top of the atmosphere and 1 at the surface, and % is

the Lagrangian derivative.

3 The Numerical Scheme

To solve Egs. (1), (2), and (3) we split the spatial operators into their horizontal

and vertical components. Therefore for a given o value, we discretize the horizontal



operators defined on a constant o spherical shell as was done in Giraldo (2001) using
the spectral element method. The vertical operators are discretized by a mass and
energy conserving flux-form finite difference method. We begin with the horizontal

discretization of the equations by the spectral element method.

3.1 Approximating the Solution in the Horizontal Direction
3.1.1 Basis Functions and Integration

To define the local operators which shall be used to construct the global approx-
imation of the solution we begin by decomposing the spherical domain €2 into N,
non-overlapping quadrilateral elements such that
Ne
Q= Qe
e=1
To perform differentiation and integration operations, we introduce the nonsin-
gular mapping = Y (&) which defines a transformation from the physical Cartesian
coordinate system & = (z,y,z) defined in €2, to the reference coordinate system
&€ = (&,7,¢) defined in each element where (§,7) € [—1,+1]? in each element, and
¢ =1 on the surface of the sphere.
Associated with the local mapping, T, is the transformation Jacobian, J = ‘;—cg,
and the determinant
oz oxr Oz
|J|=8—<-G , G’:a—gxa—n ,
where G represents the surface conforming component of the mapping (see Giraldo
2001 for further details).
We can now use this mapping to define the local representation of the solution, g =

(7, u,0), and the approximation of operations such as differentiation and integration.

For simplicity, we assume ( to be unity in what remains and denote £ = (&, 7).



The simple structure of the reference element, I, spanned by & € [—1,1]%, makes
it natural to represent the local element-wise solution g by an Nth order polynomial
in £ as

(N+1)?
an(@) = Y vi(z)ay(zs) ()
k=1
where x; represents (N + 1)? grid points and () is the associated multivariate

Lagrange polynomial. The logical square structure of | simplifies matters in that we

can express the Lagrange polynomial by a tensor-product as

Yi(x) = hi(€(x)) hi(n(z)), (6)
where 4,5 = 0,..., N, and k = 1,..., (N + 1)2. In Eq. (6) h are the one-dimensional

Lagrange polynomials

L (1-8)Py(§)
N(N+1)(£=&)Pn(&)

where Py(€) is the Nth order Legendre polynomial. For the grid points (&;,n;) we

hi(g) = -

choose the Legendre-Gauss-Lobatto (LGL) points, given as the tensor-product of the
roots of
(1-&)Py(€) =0 .
This choice simplifies the construction of the algorithm because the LGL points are
also used as the sampling points in the Gaussian quadrature rule required by the
numerical integration which we shall describe shortly.
The choice of the LGL points enables the straightforward approximation of local

element integrals, i.e.,

N

Jo, @) dz = [a©)1€)]de = Y w(@nalEn)l(Em)] -

e %,7=0

where |J| represents the local Jacobian for the transformation between €2, and |, and

w(&) and w(n;) are the Gaussian quadrature weights,

w(&) = N(N2+ 1) (szl(&)>2 ’

8



associated with the one-dimensional LGL quadrature.

Let us represent the governing equations by the simplified form

g—(t]+V-F:S(q) (7)

where F' represents the flux tensor and S the source terms which we define explicitly in
the appendix. Taking the weak form of Eq. (7) with respect to global basis functions
U gives

A)W(%—i—V-F—S(q))dm:O 8)

and substituting for ¢ and F' for by the global polynomial approximation similar to

Eq. (5) yields the global Galerkin projection of the governing equations
aQJ _

where I, J =1, ..., N, with N, representing the number of grid points in the horizontal;
we shall return to the discussion on the construction of the global solution in Sec.
3.1.2. Because the global operators given in Eq. (9) are never explicitly defined we
begin by defining the local operators which are in fact constructed and then used to
construct the action of these global operators on the state vector.

Before discussing the construction of the global solution, let us first describe the

local element-wise operators which are used to construct the global solution. Let

M = [, @) (w)dz (10)

represent the mass matrix and

Dij= [ i(2) Vi, (@) (11)
the differentiation matrix, where ¢ (x) are the local element basis functions given
in Eq. (6), 4,7 = 1,..., (N + 1)? are the number of grid points within each element
Qe, and D = (D*, DY, D?) is a vector of matrices corresponding to the three spatial

directions. The role of these local element matrices are described below.



3.1.2 Satisfying the Equations Globally

To satisfy the equations globally requires assembling the global solution by virtue
of an element-wise construction. This element-wise construction is based on the
summation of the local element matrices to form their global representation. This
summation procedure is known as the global assembly or direct stiffness summation
and is depicted graphically in Fig. 1. In this figure, the local element matrices given
in Egs. (10) and (11) are constructed inside each of the four elements (E1,..., F4)
and then each element contributes its local approximation to the global sum. For
example, the element matrix contributions at the local grid points 4, 3, 2, and 1
of elements E1, E2, E3, and E4 are summed in order to construct the value of the
global matrix at the global grid point G1. It should be understood that the local grid
points (4,3,2,1) are the same grid point which are claimed by different elements (and
possibly processors) which in the global indexing is G1. Let us represent this global
assembly procedure by the summation operator

A (12)

e=1
with the mapping (i,e) — (I) where i = 1,...,(N +1) are the local element
grid points, e = 1,..., N, are the spectral elements covering the spherical shell, and
I =1,...,N, are the global grid points. Applying the global assembly operator to

the local element matrices results in the following global matrices:

Ne
M = /\ M* (13)
e=1
for the mass matrix, and
Ne
D = /\ D¢ (14)
e=1

for the differentiation matrix.

10



With these operators defined and by denoting the global grid vector for the surface
pressure as mg, the wind velocity as ug, the potential temperature as 65, and the
geopotential height as ¢ we can now write the semi-discrete approximation to Egs.

(1), (2), and (3) as follows

aﬂ—G T 6 . _
M o + D" (mgug) + M {a—a(wa)}G =0 (15)
Ju . Ou 2wz oP
M a—f—i—ug DUG+M {OE}G =-M ( a2G(ZBG X UG)) _D¢G_Cp0G (%)G‘DT{G
(16)
e ¢ 90
M == +ug Dig + M {o%}G_o (17)

where the superscript 7" denotes the transpose operation, and the terms { }q de-
note the global grid vector of the quantities inside the brackets after they have been
vertically discretized. It should be noted that the mass matrix, M, is diagonal and
thereby trivial to invert. The diagonal property of this matrix is due to the dual role
of the LGL points which are used both as grid points and quadrature points. Further-
more, the global matrix D is never actually constructed, but rather only its action on
the state vector g is computed by virtue of the local element matrix and the global

assembly procedure. We now address the discretization of the vertical operators.

3.2 Approximating the Solution in the Vertical Direction

The equations are discretized in the vertical direction using a conservative flux-form
finite difference method. This is the same vertical differencing method used in the
Navy’s Operational Global Atmospheric Prediction System (NOGAPS) which is the
U.S. Navy’s current global atmospheric NWP model (Hogan and Rosmond 1991;
Rosmond 2000). NOGAPS is used by the U.S. Navy for medium-range weather

forecasts worldwide. This model is used to drive the U.S. Navy’s mesoscale model

11



(Hodur 1997) and is used as a coupled ocean-atmosphere system (Rosmond et al.
2002). NOGAPS uses the spectral transform method in the horizontal, a flux-form
finite difference in the vertical, and a semi-implicit leapfrog scheme in time. The
horizontal resolution of NOGAPS recently increased from T159 with 24 vertical levels
to T239 with 30 vertical levels (Hogan et al. 2002).

Although we could also discretize the vertical operators in SEE-AM with the
spectral element method we have chosen to use the finite difference method in order
to remain as similar as possible to NOGAPS. This will ensure that any differences in
the results are due only to discrepancies in the discrete horizontal operators between
the two models. We hope to report on a spectral element vertical discretization in
future work.

To simplify the proceeding discussion, let us define the vertical integration of the

global grid point solution vector g, = (7g, ug, fg) to be

[ agio = (ag)dos (18)

L=1

where K denotes the number of vertical levels to be integrated across and
Aop = Opyl =0y 1

represents the thickness of the vertical layer.
To discretize the equations in the vertical direction we begin by integrating Eq.
(15) across all the vertical levels of the atmosphere. Applying no-flux boundaries at

the top and bottom levels of the atmosphere results in

aﬂ. _ Nlev
8—tG =M~y D(rgug)kAok (19)
K=1

where Ny, denotes the total number of vertical levels. Once the surface pressure

[elide]

2 1s computed, the vertical velocity ¢ at each vertical level is obtained by

tendency

12



integrating Eq. (15) from the top of the atmosphere (o = 0) to the desired vertical

level K thus giving

. on L&
(7TGo'G)K+% = —a—tGO'K+% —_ M 1 Z DT(WGuG')KAO'K (20)
L=1

where K denotes a full level and K + % denote the half levels of this staggered sigma
coordinate system. The prognostic variables and ¢ all reside at the full levels while the
diagnostic variables reside at the half levels. The top and bottom of the atmosphere
are at the half levels K = % and K = Nj, + %, respectively. Figure 2 illustrates the
sigma coordinate system and the location of the prognostic and diagnostic variables.

The vertically differenced terms &% of the global solution vector g, are computed
in the following manner

((,;‘2(1_;)}{ . ((CIG)K+% - (qG)K) o ((QG)K - (qG)K—%> (21)

O'K_|_%_O'K O-K_O-Kfé

where

(ue) k41 + (u)k)

and

Pyg,1 — Pg Pry1— Pgia
= (O)x | =2 E BRSNS AN
(0G)K+% (0a) (PK—H — PK) + (0¢) k+1 ( Prir— Px )

These interpolation stencils are chosen in order to enforce the numerical scheme to

conserve energy. Finally, the hydrostatic equation, Eq. (4), is discretized as follows

¢K - ¢K+1 = Cp(eG)K (PK—{—% - PK) + Cp(HG)K_H_ (PK+1 - PK—{—%) (22)

where the Exner functions used are

k+1 k+1

Pr+t\” 1 1 (Pgq1 —Pg_1
Py = ( ) and Py = ( 1) — (e TKa) (g3
Po k+1/P5 \Pr+t —Pr-1

13



3.3 Temporal Discretization

Discretizing the semi-discrete system, Eqs. (19), (20), (16), and (17) in time by an

explicit Eulerian leapfrog method yields

T —
M T T8 - ST D (rgug)ik Ao (24
K=1
. \n atl — g K
(Wgag)K+% = _GTtGO—K—f—% —]\471 ZDT(’/TGuG')gAO'L (25)
L=1
ulktt — ul T . Ou 2wzg
M —oar - \Y%e Dug + M o G—i—M ( o (g qu)> + D¢ + cpfc
(26)
0n—|—1 —pn o0 n
MG —C=_(ulDlg+M {6— : 2
2/t (“G ¢+ {Uaa}c) (27)

Because the leapfrog method is an explicit time differencing scheme it does require
a stringent time-step restriction. In order to maintain stability throughout long time-
integrations (up to 1200 days for the Held-Suarez test case) we use a Courant number

of % We base this time-step on the following definition of Courant number

_ A A

¢ As

where

As = \/Am2 + Ay? + AzZ?

is the physical spacing of the grid and Apay is the maximum wave speed of the atmo-
spheric equations (see the appendix for a derivation of this characteristic velocity).

The physical spacing of the grid As scales as

1

A _
s X e

14
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a ) D7Tg>
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where N, is the number of spectral elements comprising the grid and N is the order
of the polynomial approximation inside each element.
Because this temporal discretization method produces a computational mode we

apply the time-averaged Asselin filter (Asselin 1972)
b = g% +0.02 (¢4 - 24 + g5 ")

to the global solution vector g, at the end of each time-step. While this is not the
most sophisticated time discretization method available, we have used it in order to
keep our model as similar to NOGAPS as possible. NOGAPS uses a semi-implicit
time discretization but this is applied as a correction to the explicit leapfrog scheme.
Future research involves the addition of semi-implicit Eulerian and fully-implicit semi-
Lagrangian methods to the current formulation which will hopefully allow an increase

in the time-step by a factor of 10.

3.4 Lagrange Multiplier and the High-Pass Filter
3.4.1 Constraining the Momentum

Because we are using Cartesian rather than spherical coordinates we must carry
three momentum equations (in addition to the equation of vertical motion); however,
because flow on a spherical shell is really only two-dimensional (at each o level)
the fluid particles are allowed an extra degree of freedom. This degree of freedom
will manifest itself in fluid particles flying off the spherical shell. Mollifying this
undesirable situation requires constraining the velocity field to be tangential to the

sphere. At each grid point we apply the following constraint

n+1 — un—i—l

U u e (28)

15



where the subscripts ¢ and u denote the constrained and unconstrained horizontal
wind velocities (see Coté 1988 for further details). For a fluid particle to remain on
the spherical shell, the wind velocity must be orthogonal to the position vector of its
grid point; that is

u-x=0,

which results in the Lagrange multiplier

Equation (28) can now be written as

n+1 __ n+1
u!" =Pu,

where
a? —1? —zy -T2
1
P — | oy @ -y —yz (29)
—z2 —yz a? — 2?

is the projection matrix which constrains vector quantities to be tangential to the
sphere. It should be pointed out that using this Cartesian formulation introduces no
approximation from the original governing equations in spherical coordinates. Swarz-
trauber et al. (1997) have shown that the equations in Cartesian coordinates with
this type of projection are in fact identical term-by-term to the equations in spherical

coordinates.

3.4.2 High-Pass Filter

Like any high-order method, the spectral element method is susceptible to aliasing
errors. In order to prevent these high frequency waves from contaminating the solution

through the introduction of non-physical oscillations a high-pass filter is used. We

16



use the filter outlined in Boyd (1998) which is applied as follows. In one dimension,

we expand the state vector g in the & direction as follows

q=Lq(S) (30)

where

Py(&o) Pu(&) (&) — Po(&) -+ Pi() — Pia(&) -+ Pn(&) — Pyv—2(&)

Lij=| R(&) P& P& —DR(&) - Pi&)—Pia(&) -+ Pn(&) — Pyvoa(§))

(31)
is the the Legendre transform matrix, P; are the Nth order Legendre polynomials,
and q are the Legendre modal coefficients. To filter the local solution g we transform
them to modal space via the inverse of Eq. (31), apply the filter weighting diagonal
matrix A, and then transform back to nodal (grid point) space. This can be written

as

a7’ =Fgq (32)

where
F=LAL™! (33)
is the filter operator which is an (N + 1) x (IV + 1) matrix. The success of the

filter hinges on the weighting matrix A. Following the idea of P.F. Fischer (private

communication) we write

1 for i <ip
A= Vi € [0, N] (34)

’__q 2 . .
1 (N:ffiF) for i >ip

where i = ip,..., N denotes the modes curtailed by the filter. In this paper we use

ir = N with g = 0.05 which represents only filtering the highest mode by 5%.

17
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The reason for constructing the Legendre transform as P, — P; 5 for i = 2,..., N
and the weighting matrix A = 1 for ¢ = 0,1 is to avoid affecting the local element
boundary values. By using this Legendre polynomial construction, only the first
two modes (P, and Pj) affect the element boundary values; the remainder of the
modes only affect the element interior values. This way we can apply the filter in
an element-by-element sense without violating the C° continuity condition at the
element interfaces (boundaries). This eliminates the need for global assembly of the
local element filter matrix. The global assembly operation incurs communication
costs on distributed-memory computers which must be minimized to achieve good
performance.

In 2D, the filter is applied as follows
97 = Fq°F" (35)

where F7' is the transpose of F' and g¢ is an (N + 1) X (N + 1) matrix containing the

solution vector of the element €2,.

4 Grid Generation on the Sphere

One of the advantages of using Cartesian coordinates is that any grid can be used with
our spectral element atmospheric model. Although we can use any grid whatsoever,
at the moment the grids must be conforming and quadrilaterally shaped. Using
the discontinuous basis functions as in Giraldo et al. (2002) will permit using non-
conforming grids and the spectral element basis in Warburton et al. (2002) will
allow the use of triangles which we reserve for future work. In order to show the
grid independence of our model, in this paper we show results on icosahedral and

hexahedral grids.

18



4.1 Icosahedral Grids

Icosahedral grids are constructed by subdividing the 20 triangular faces of the icosa-
hedron by a Lagrange polynomial of order n; as described in Giraldo et al. (2002).
Prior to mapping these elements onto the sphere it is convenient to map the triangles
onto a gnomonic space. The most unbiased mapping is obtained by mapping about
the centroid of the triangles.

Let (¢, ¢c) be the centroid of the triangle we wish to map. The gnomonic mapping

is then given by

acosfsin(A — A.)
sin 6, sin 0 + cos 6, cos 6 cos(A — A.)
a[cos @, sinf — sin§, cos f cos(A — A,)]
sin 6, sin f + cos 6, cos B cos(\ — \.)

To simplify matters a bit, we first apply the rotation mapping R whereby Eq. (36)
becomes

T = atan \g, Yy = atan pgsec Ag , (37)

in the new coordinate system with the coordinates (A, ) located at (0,0). The

rotation mapping, R, is defined as follows

cos psin(A — A.)

Ar = arctan
R sin . sin ¢ + €os @, cos @ cos(A — ;)

@r = arcsin[cos p.sin ¢ — sin @, cos @ cos(A — A;)] .

Once the triangular icosahedral grid is constructed, we subdivide each triangular
element into 3 quadrilateral elements. Upon dividing the triangles into quadrilaterals
one can construct the higher order LGL grid points inside each element resulting in

a quadrilateral grid with the following properties
N, = 60(n; N)*+2 (38)
N, = 60(n;)? (39)
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where N, and N, denote the total number of grid points and elements comprising
the icosahedral grid and N is the polynomial order of the elements. Examples of

corresponding grids for ny =2 N =8 and ny =4 N = 8 are illustrated in Fig. 3.

4.2 Hexahedral Grids

Hexahedral grids are constructed by subdividing the six faces of a hexahedron into the
desired number of quadrilateral elements and then mapping these onto the sphere.
We begin by constructing a spectral element grid on the gnomonic space G. G is
defined by the square region £, = [—F,+7%]* in a 2D Cartesian space (Komatitsch
and Tromp 2002; Ronchi et al. 1996). This region is divided into the elements and
inside each element we construct the LGL grid points. Upon constructing this grid

we then map the gnomonic coordinates to the corresponding spherical coordinates,

Ag, via

e = &a

) tan ng
pe = arcsin i
V/1+ tan® &g + tan®ng

It should be noted that Ag only gives the spherical coordinates of one of the six
faces of the hexahedron. Therefore, we have to rotate this face to the six faces of the

hexahedron by the rotation mapping R

(40)

cos sin A\
A= )\c—l-arctan( Yo il Ac )

COS (PG COS A COS (P, — Sin g Sin Y,

¢ = arcsin (sin pg cos @, + €os Pg €os Ag sin ;)

where the centroids, ()., .), of the six faces are located at (A, ¢.) = ([c —1] %,0)
forc=1,...,4 and (X5, ¢5) = (0, g) , (X6, 06) = (0, —%) This approach results in
the construction of the hexahedral grid with the following properties

N, = 6(ngN)* +2 (41)
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N, = 6(ng)? (42)

where N, and N, denote the number of grid points and elements comprising the grid.
The parameter ny refers to the number of quadrilateral elements in each direction (£
and 7¢g) contained in each of the six faces of the hexahedron and N is the polynomial
order of the elements. Figure 4 shows the grids ng =4 N =8 and ng =8 N = 8.

The hexahedral resolution H where
H=nygN (43)

has approximately the same number of grid points as the spectral triangular trunca-
tion T on a Gaussian lat-lon grid; these two different grid resolutions are related by
the expression

H~T+1 (44)

To derive this relations requires a few definitions. Let the number of grid points in a

spectral model be given by
N, = Nioy, - Nigy = 2N},

where Nj,, and Ny, denote the number of points in the longitudinal and meridional
directions in a Gaussian grid. In addition, let the spectral triangular truncation be

given by T = 2N, — 1 which results in the number of grid points to be
9 2

Equating this expression to Eq. (41) yields H ~ ?(T + 1) which we approximate by
Eq. (44). Of course, there are other ways of relating the resolution of different grids
but certainly using the number of grid points is the most logical approach. With this
relationship between spectral triangular truncation, 7', and hexahedral resolution,
H, we can obtain the equivalent hexahedral resolution for the NOGAPS operational

resolution of 7239 with ny = 30 and N = 8 (yielding H240).
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5 Parallel Implementation

In this section we discuss the issues concerning the implementation of SEE-AM on
distributed-memory computing platforms. Let us begin by describing the domain

decomposition strategy.

5.1 Domain Decomposition

Because our implementation of the spectral element method is completely indepen-
dent from the grid we are free to choose any grid; however in order to simplify the
discussion of our model we describe the domain decomposition as it pertains to hexa-
hedral grids only. To construct a hexahedral grid we map the six faces of a hexahedron
onto a sphere. Therefore, the logical partitioning of the domain is the decomposition
of the spherical domain into the six faces of the hexahedron. In keeping with this
simple decomposition strategy we then further subdivide the domain into perfectly

square regions. In other words, the following partitions are possible
Nproc = 6(nP)Q (45)

where N is the total number of processors and np represents the partitioning of
processors in each of the two Cartesian directions on each of the six faces of the

hexahedron. In addition, we require the following constraint on np
np < ng

which states that the number of processors cannot exceed the number of spectral
elements.

This is by no means the only possible partitioning strategy. A more sophisticated
approach is to use the Metis graph partitioning software (Karypis et al. 1998) or

the space-filling curves strategy presented in Dennis (2003). We merely present this
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ad hoc hexahedral grid domain decomposition strategy as a proof-of-concept that
SEE-AM performs efficiently on distributed-memory computers. In the future, we
plan on implementing the space-filling curves strategy which will simplify the domain

partitioning and allow us to use any grid whatsoever.

5.2 Communication

From the description of the global assembly procedure given in Section 3.1.2 it should
be apparent that the communication in the spectral element method results from the
summation of the local element matrices to construct the global matrices. In order to
better understand the communication that takes place across neighboring processors
let us look at only one face of the hexahedral grid. For the sake of argument, let us
assume that np = 3 meaning that there are nine processors per face. This situation
is illustrated in Fig. 5. Furthermore let us assume that ny = 9, that is there are 81
elements per face. From the figure it is evident that there will then be nine elements
inside each processor denoted by N1,..., N9 for the neighbors and P1,..., P9 for
the on-processor elements. The processors are denoted by the thick lines while the
thin lines represent the spectral elements. However, in order to keep the discussion
as general as possible, we shall not define the order of the polynomial, IV, inside each
element.

Because of the C° continuity condition required by the spectral element method,
the four corner points of processor PROC in Fig. 5 are each shared by four processors:
PROC plus three neighboring processors. Similarly, edge points are shared by two
processors. This continuity condition is satisfied by the global assembly procedure
which is executed as follows across processors. In processor PROC the on-processor

right-hand-side (RHS) vectors of Egs. (24), (26), and (27) are constructed. For the
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interior grid points of PROC these RHS vectors represent the globally assembled RHS
vectors of the equations; however, for the boundary grid points they are only a portion
of the global RHS vectors. Thus, processor PROC requires the boundary grid point
RHS vectors from processors NBH1,..., NBHS8 to complete the global assembly of
its RHS vectors. Once these global RHS vectors are constructed each processor can
then solve independently for the global solution via Egs. (24), (26), and (27). Note
that Eq. (25) is solved on-processor without communication after Eq. (24) is solved.

As an example of how the global solutions of the processor corner points are
obtained let us describe the procedure for the bottom left grid point of PROC in
Fig. 5. To construct the global solution at this grid point requires knowing the
contribution of the on-processor assembled RHS vectors from the neighbors NBR1,
NBR2, and NBRS&. Therefore, each processor computes its on-processor assembled
RHS vectors locally, and then sends its perimeter values to its eight neighboring

processors. This results in a message approximately of the size

20(N + 1) Nieyer (46)
where the ratio
ny
= — 47
o=2t (47)

represents the number of elements per processor in each of the two Cartesian directions
on each of the six faces of the hexahedron. Using Eq. (42) and (45) we can rewrite

Eq. (47) as
Ne
Nproc '

(48)

o=

Equation (46) illustrates that the message size scales linearly with N, Ny, and «; the
constant in Eq. (46) arises from each processor having four edges and the primitive

equations, in Cartesian coordinates, having five prognostic variables. Thus at every
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time-step the perimeter values of the full 3D RHS vectors of each processor are sent
to its neighbors.

The communication described above is exact for all processors that do not contain
one of the eight corner points of the hexahedron. In Fig. 5 processor NBH5 only
has seven neighboring processors to communicate with due to the topology of the
hexahedron. In addition, for the special case ny = 1 each processor has only four

neighbors.

5.3 Performance

5.3.1 Model Scalability

One of the main advantages of using spectral element methods over spectral trans-
form methods is that for an equivalent resolution the spectral element method allows
the use of far more processors. As an example let us compare SEE-AM with NO-
GAPS which uses the spectral transform method in the horizontal. The most efficient
decomposition for NOGAPS is through a 1D decomposition along latitude rings. It
should be noted, however, that in general 2D decompositions are more efficient for
spectral transform models as shown in Foster et al. (1992). We shall only be compar-
ing the operational version of NOGAPS with SEE-AM and it should be understood
that the discussion in this section does not necessarily extend to all spectral transform
models but it should provide some reasonable estimates.
Using a 1D domain decomposition the maximum number of processors that NO-
GAPS can use is
Nioe = Niag & gT (49)
where Nj,; denotes the number of latitude rings and 7" the resolution of the spectral

triangular truncation. In contrast, the maximum number of processors that SEE-AM
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can use is
6

NH N,
N2

proc

H? (50)

Il

where we have used Egs. (42) and (43) in order to simplify the expression and write it
as a function of hexahedral resolution, H. In other words SEE-AM can use as many
processors as there are elements. Thus for fixed /N the number of processors allowed by
SEE-AM increases quadratically with resolution, H, while only linearly for NOGAPS.
At the operational T239 resolution NOGAPS can use 360 processors whereas SEE-
AM (assuming ny = 30 and N = 8) can use 5400 processors; a fifteen-fold increase
in the number of processors. Equation (50) shows that if we wish to further increase
the number of processors with SEE-AM we simply increase ng while decreasing N
accordingly in order to maintain the horizontal resolution fixed. Therefore we could
use ny = 60 and N = 4 for a total of 21600 processors; a sixty-fold increase in the
number of processors. However, decreasing N will impact the solution accuracy and
the issue of efficiency versus accuracy must be carefully weighed. The point here is
that the spectral element method offers this flexibility to increase either the accuracy
or efficiency - a luxury not shared by the spectral transform method. We leave the
detailed discussion of the issue of efficiency versus accuracy to future work but at this
point we anticipate using N = 8; even with N = 8 SEE-AM accommodates many

more processors than NOGAPS.

5.3.2 Comparison with NOGAPS
The rate of floating point operations for SEE-AM increases as
O (n3N* Ny ) (51)

which corresponds to the construction of derivatives and the application of the filter

in the spectral element method. In contrast the rate of floating point operations for
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NOGAPS increases as

o (letNleV) (52)

which corresponds to the computation of the Legendre transform involving the merid-
ional direction. The Legendre transform has been the bottleneck of the spectral trans-
form method due to the lack of a fast transform such as the fast Fourier transform
(FFT) of Cooley and Tukey (1965) for the zonal direction.

In order to compare the rates of operations between SEE-AM and NOGAPS we

rewrite Egs. (51) and (52) as functions of resolution, H and T', as follows for SEE-AM
O (H?*Niey N) (53)

and for NOGAPS

O (T*Niey) - (54)

Thus the cost increases cubically with resolution, 7', for NOGAPS while it only
increases quadratically for SEE-AM, H, provided that /N remains fixed.

To understand why the spectral transform method becomes increasingly more
expensive than the spectral element method requires revisiting Eqs. (51) and (52).
For the spectral element method, the horizontal resolution is governed by ny and N.
Recall that ng governs the number of spectral elements while N is the order of the
polynomials. This last term is analogous to Ny, in Eq. (54) for the spectral transform
method. To increase the horizontal resolution of a spectral transform model requires
increasing Nj,¢ which increases the cost by its cube; there is no way around this. In
contrast, with the spectral element method one has the choice of increasing either the
number of elements or the order of the polynomial. Since the cost increases cubically
with N and only quadratically with ng then it makes sense to keep the polynomial
order fixed and increase the number of elements to obtain higher resolutions. This

flexibility is due to the h-p nature of the spectral element method. By keeping ng fixed
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(say ng = 1) and increasing N we reach the spectral transform limit of the spectral
element method (known as the p-type method). On the other hand, by keeping N
fixed (say N = 1) and increasing ny we obtain the linear finite element limit of the
spectral element method (known as the h-type method). On serial computers the
optimal strategy for selecting ny and N is usually to pick IV in the range [8,16] and
increase ng to yield the desired resolution.

The rates reported in Egs. (53) and (54) are based on a per time-step basis;
however, in practice the spectral transform method admits a much larger time-step
than the spectral element method. This is due to the time-step stability limits being
different for the two models. For NOGAPS the time-step must be decreased linearly

with horizontal resolution 7',

1
Ath o
o
while for SEE-AM the time-step scales as
1 11
H _— e
A NS NE

Therefore if we use the p-version of the spectral element method then the time-step
must be decreased quadratically with resolution; however, if we keep N fixed then we
can achieve a linear decrease of the time-step with resolution which will allow spectral
element models to compete with spectral transform models. Let us now compare how
the time-steps differ for NOGAPS and SEE-AM.

The explicit leapfrog version of NOGAPS admits a time-step 3.5 times larger than
the explicit leapfrog version of SEE-AM and the semi-implicit version of NOGAPS
admits a time-step 15 times larger than SEE-AM. Thus for SEE-AM to be competitive
with NOGAPS, it must be far more efficient on a per grid point and per time-step

basis. In Taylor et al. (1997), they show that the cost per grid point of the spectral
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transform method is

4.25 Ny + 107 log Nyt

and that of the spectral element is 192 for N = 8. These cost estimates are com-
puted on a per processor basis. Based on these cost estimates the explicit SEE-AM
model will outperform the explicit NOGAPS beyond resolutions of T108 and the
semi-implicit NOGAPS beyond T406. Currently, some spectral transform models
are running beyond T406 such as the European Centre for Medium-Range Weather
Forecasts’ model which uses T511 and NOGAPS is expected to be at or beyond this
resolution in the near future. A semi-implicit implementation of SEE-AM will out-
perform the semi-implicit NOGAPS beyond a resolution of T185 which is well below
the current operational resolution of T239. This resolution is obtained by comparing
the serial versions of our semi-implicit implementation of SEE-AM in which we use
a conservative estimate of a factor of two increase in performance over the explicit
SEE-AM; however, this does not necessarily guarantee that we will achieve this gain
in the parallel version but it does provide a good estimate. Nonetheless, much work
has been done regarding this issue and we hope to benefit from the volume of work
in the literature on this topic, most notably the parallel elliptic solvers of Tufo and
Fischer (1999) for the Navier-Stokes equations and the work by Loft et al. (2001) and
Thomas et al. (2002) for the multi-level shallow water equations.

In Fig. 6 we show a performance comparison on an IBM SP3 for the explicit
NOGAPS and SEE-AM models; both models use a resolution of T159 with Ny, = 24
vertical levels and the explicit SEE-AM time-step, At = 35 seconds. The results
of this figure are summarized as follows. First, SEE-AM (spectral element) is much
faster than NOGAPS (spectral transform) on a per time-step and per processor basis.
For an equal number of processors, say 150, SEE-AM is more than two times faster

than NOGAPS. Second, SEE-AM can use many more processors than NOGAPS. At
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a resolution of T159, NOGAPS can only use 150 processors effectively; note that
beyond 150 processors the performance of NOGAPS decreases. In contrast, SEE-AM
is able to use 600 processors effectively and it can accommodate up to 2400 processors.
Finally, the results presented in Fig. 6 are very reassuring because they show that
SEE-AM scales linearly for increasing processor number. At 600 processors, both the
model and the communication network did not suffer any severe penalties. While
we should not expect to get the same type of performance on 2400 processors, it is
exciting to anticipate that it may be possible.

The results in Fig. 6 clearly show that SEE-AM is far more efficient than NOGAPS
on a per time-step basis and per processor basis. However, NOGAPS can use a time-
step much larger than SEE-AM. In Fig. 7 we plot the results for the semi-implicit
NOGAPS, explicit NOGAPS, and explicit SEE-AM for a T159 horizontal resolution
with 24 vertical levels. The results shown here are plotted using the maximum time-
step that each model allows and they are At = 540, 120 and 35 seconds for the
semi-implicit NOGAPS, explicit NOGAPS, and SEE-AM, respectively.

The results of this study are summarized as follows. For small processor num-
bers NOGAPS outperforms SEE-AM. However, for processor numbers greater than
250 SEE-AM outperforms the explicit NOGAPS. If the linear scalability of SEE-AM
were to hold for increasing processor numbers we would expect SEE-AM to outper-
form the semi-implicit NOGAPS at around 900 processors. However, if we could
double the time-step by introducing a semi-implicit implementation then SEE-AM
would outperform the semi-implicit NOGAPS beyond 500 processors. It is possible to
further increase the efficiency of SEE-AM because this model has not yet been fully
optimized. The results presented in this section should not be taken as the optimal
performance of spectral element models but merely as a first attempt at constructing

fast and efficient NWP models. We hope to benefit from the work of Thomas et al.
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(2002) and Loft et al. (2001) on the optimization of spectral element models.

6 Results

In this section we validate the spectral element Eulerian atmospheric model (SEE-
AM) using barotropic and baroclinic test cases. The barotropic cases are used to
confirm the exponential accuracy of the discrete spectral element horizontal operators.
The baroclinic cases are used to validate the full 3D primitive hydrostatic equation
model. In order to judge the accuracy of the model we plot normalized L, error norms

defined as follows

fQ (qexact QG)2 dx
= 55
lgc!L, \l To G da (55)

where gg is the computed solution vector, @eyact 1S the exact solution, and the norm
is computed as a broken norm. All the results are computed using 64 bit arithmetic

precision.

6.1 Barotropic Tests

To validate the spectral element discrete operators we run the model using the shallow
water tests 1, 2, and 3 in Williamson et al. (1992). Because these tests admit exact
solutions we are able to plot normalized geopotential, ¢, L, error norms. Figure
8 shows that SEE-AM achieves the expected exponential convergence regardless of
whether the icosahedral or hexahedral grid is used. Case 1 will not yield exponential
convergence due to the non-smooth nature of the derivatives at the base of the cosine
bell.

In Figs. 9, 10, and 11 we compare SEE-AM on hexahedral grids with various
other models. These models are the Jakob-Chien et al. 1995 (spectral transform),

Heikes and Randall 1995 (finite difference), Taylor et al. 1997 (spectral element),
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and the Tomita et al. 2001 (finite difference) models. These models were chosen
because they are representative of the current methods being explored for future NWP
and climate models. The Jakob-Chien model uses the same horizontal operators
used in the NOGAPS (Hogan and Rosmond 1991), European Centre for Medium-
Range Weather Forecasts (ECMWF, Simmons et al. 1989), the National Center for
Environmental Prediction (NCEP, Sela 1980), and National Center for Atmospheric
Research (NCAR, Hack et al. 1992) spectral transform models. The Heikes and
Randall model uses the same horizontal operators in the Colorado State University
geodesic grid climate model (Randall 2002; Ringler 2000) and is similar to the German
Weather Service model (GME, Majewski et al. 2002). The Tomita et al. (2001) model
uses the horizontal operators expected to be used in the Japanese Earth Simulator
project. Finally, the Taylor et al. (1997) model uses similar horizontal operators to the
NCAR spectral element dynamical core (Loft et al. 2001; Thomas et al. 2002) and the
Rutgers University spectral element ocean model (Iskandarani et al. 2002). Although
it is very difficult to compare different models we have chosen to use equivalent
horizontal resolutions based on the number of grid points. Thus for grid point models
we compute the equivalent hexahedral resolution by using Egs. (41) and (43) such
that for a given number of grid points NV, we get

N, — 2
o

H =

The results for the horizontal operators are summarized as follows. Figures 9
and 10 show that for Cases 1 and 2 SEE-AM yields the best accuracy of all the
models including the high-accuracy Jakob-Chien et al. and Taylor et al. models. For
Case 1, SEE-AM is almost an order of magnitude more accurate than the Taylor
et al. model and is twice as accurate as the Jakob-Chien et al. model. For Case

2, SEE-AM is approximately eight orders of magnitude more accurate than these
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two high-accuracy models. The plateauing of the error for SEE-AM is due to the
accuracy reaching machine precision. Finally, Fig. 11 shows that for Case 3 SEE-AM
gives better accuracy than all the other models except for the spectral transform
model of Jakob-Chien et al. which yields a slightly more accurate result (0.7 x 10~°

compared to 1 x 107?).

6.2 Baroclinic Tests

Because there are no analytic solutions to the full atmospheric equations we cannot
run test cases as in the barotropic case and compare to exact solutions. Instead, we
need to either use test cases in which the outcome is a simple enough pattern that
might be easily discerned beforehand or we need to run benchmark test cases run by a
vast community. We have chosen to use both types of test cases: the Rossby-Haurwitz
wave and the balanced initial state representing the former, and the Held-Suarez test
and the baroclinic instability test the latter.

No diffusion operators are included in any of our results for both NOGAPS and
SEE-AM. At every time-step, the % triangular truncation is applied to NOGAPS and

the element-wise filter is applied to SEE-AM.

6.2.1 Rossby-Haurwitz Wave Number 4

In order to judge the accuracy of SEE-AM, we compare it to NOGAPS for the Rossby-
Haurwitz wave number 4. This test does not have an analytic solution and so we use
it for qualitative comparisons. From Monaco and Williams (1975) we initialize the

model as follows: the wind velocity is
1
u(A, p,0) = — [A sin (n)) cos” ™ ¢ — nAsin (nA) cos™ ! psin® ¢ — Ba®cos ¢

1
v(\, @, 0) = - [An sin ¢ cos™ ™ ¢ — nAsin (n)) cos (n)\)]
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Vo € [0, 1] where

a is the earth’s radius and n is the wave number. The temperature field is based on

the NACA standard atmosphere and is defined as

T =288 — 0.00652z Kelvin

0.19023
2z = 44308 (1 — <£> ) meters.
Do

The terrain pressure is given as

¢ 5.2568
—py (14— —
T=r < +434505.6) b

where

where the geopotential is
¢ = a’Ay+ a’Bysin (n)) + a’Cy (2 sin? (n)) — 1)

and

e

B
A 20+ B)
»= 3 —(2Q+ B)cos® o + o o

2(2 + B)%
(n+1)(n+ )

> =

cos” [(n2 +2n +2) — (n+ 1) cos? gp] ,

1 /A
Cy = 1 (E) cos®™ ¢ [(n +1)cos® ¢ — (n + 2)] :

Surface contours of the prognostic variables after a 5 day integration for 1159,
Niew = 24 resolutions of SEE-AM and NOGAPS are shown in Figs. 12 and 13, re-
spectively. The results between the two models are virtually indistinguishable. This
means that both models yield similar values for all of the prognostic variables as well
as similar phase speeds - an important property for the successful tracking of tropical
cyclones. It should not be surprising that SEE-AM gives identical results to NO-

GAPS. Both models use the same temporal and vertical discretization methods. The
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only difference is in the horizontal discretization methods. However, in Section 6.1
using barotropic test cases we showed that the spectral element method gives almost
identical accuracy to the spectral transform method.

Having established the accuracy of the model let us now turn to the stability of

the spectral element model for longer time integrations.

6.2.2 Held-Suarez Test Case

This test case was introduced by Held and Suarez (1994) and has been the most widely
used test for dynamical cores. In essence, this test case provides a good platform to
assess the capabilities of the model in simulating a realistic climate circulation. Simple
boundary conditions are used in order to parameterize the radiative forcing at the
surface. The momentum and potential temperature equations are slightly altered
in order to introduce an equilibrium temperature due to the sub-grid scale physical
processes and a Rayleigh damping of the low-level winds is included to represent

boundary-layer friction. The momentum equation is now defined as follows

ou
E = ... kvu
and the potential temperature is
00
a — . ka (0 - oeq)

where the ellipses denote the usual terms in the momentum and potential temperature
equations (see Held and Suarez 1994 for the values of k,, kg, and 6q). For this test
we use an equivalent resolution to that used in Held and Suarez (1994), namely H64
(ng = 8 and N = 8) with 20 vertical levels (Ve,). The mean zonally-averaged zonal
velocity and temperature are shown as a function of the vertical coordinate o in Fig.

14. These plots are obtained from a 1200 day integration with the results sampled
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every 4 days beginning with day 200. These results compare quite well with those
obtained with the spectral transform model in Held and Suarez (1994) where the
mid-latitude jets in the upper atmosphere are clearly visible (Fig. 14a) and a realistic

temperature stratification is maintained (Fig. 14b).

6.2.3 Jablonowski-Williamson Test Cases

The following two cases represent a new set of tests for judging the accuracy and sta-
bility of dynamical cores. These tests are introduced in Jablonowski and Williamson
(2002).

The surface pressure is initially given as ps(), ¢) = 1000 hPa and the initial wind

velocities are defined as

u (A, ,0) = ug cos? o, sin?(2¢)

v(Ap,0)=0

where ug =35 2, 0, = (60 — 0¢)Z , 09 = 0.252, and o is the vertical coordinate. The
s 2

horizontally averaged temperature is

R4
Toag for o> oy
T (o) =

R,T
Tyo o +AT (o —0)® for o <oy
where Tp = 288 K, I' = 0.005 X, g = 9.806 22, AT = 4.8 x 10° K, and 0, = 0.2 is the

tropopause level. Defining the following functions

1 10

ACZ _2 in < i _> _:|
[ sin” ¢ { cos g0+3 +63

8 4 . 9 2 ™
gcos go(sm (p—i-—)——]

B, =
+aw 3 1

we can now write the potential temperature as follows

3 3
0\, ¢,0) = P(\,¢,0) T(0) + = P(, ¢,0) T :

A.+ B
)P0 % o1.+5)

. L
sin o, cos? g, [2u0 cos
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where P is the Exner function and (a,w) are the radius of the earth and its angular

velocity, respectively. The surface geopotential is

bs(A, ) = ug cos? (g (0s — 00)> [uo cos? (g (05 — 00)> A+ Bc]

where o, = 1. Using these test cases we compare SEE-AM with three well-established

models.

Balanced Initial State For this test case, the atmosphere is initially balanced by
the above equations for surface pressure, ps, wind velocities, (u, v), potential temper-
ature, #, and surface geopotential, ¢,. Using these initial conditions, the equations
should remain balanced for an indefinite amount of time. Figure 15 shows the nor-
malized surface pressure, 7, Ly error norm as a function of time for a 30 day period for
SEE-AM with H160 horizontal resolution and 24 vertical levels. Note that while the
error oscillates with time it remains bounded which confirms that the initial balanced

state is maintained.

Baroclinic Instability This case is similar to the balanced initial state except that

now a perturbation is added to the initial zonal velocity. This perturbation is given

(0 9) = exp [— (%)]

by

where

7 = aarccos [sin @, sin ¢ + cos . cos @ cos(A — )],

(Ae, pe) = (%, %") and R = {; are the location of the perturbation and its radius.
This perturbation grows until a baroclinic instability develops and then breaks
near day nine. Figure 16 shows the minimum surface pressure p, as a function of

time for SEE-AM against various models including the NCAR spectral transform
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model (Hack et al. 1992), the NASA Goddard finite volume model (Yeh et al. 2002),
and the German Weather Service icosahedral finite difference model (Majewksi et al.
2002) which we denote as GME; the results of the latter three models are courtesy
of Christiane Jablonowski. Figure 17 shows a zoomed in version of Fig. 16. For the
grid point models, we use the definition of equivalent hexahedral resolution, H, which
we defined for the barotropic test cases. The results of this case are summarized as
follows. Figure 16 shows that all four models are in complete agreement until day 8,
at which point the two lower order models (NASA and GME) diverge from the NCAR
and SEE-AM models. The two lower order models, NASA and GME, compare well
with each other throughout the 14 day integration. There are some slight deviations
between days 12 and 13 (Fig. 17) but overall they both follow the same pattern. The
two higher order models, NCAR and SEE-AM, compare extremely well with each
other throughout the 14 day integration. This can be seen more clearly in Fig. 17

where the pressure curves are directly on top of each other.

7 Conclusion

A new dynamical core constructed using the spectral element method based on 3D
Cartesian coordinates has been presented. The advantages of using Cartesian co-
ordinates are the elimination of the polar singularity, the flexibility to use any grid
including adaptive unstructured grids, and the ease with which the Eulerian model
can be converted to a semi-Lagrangian form. The advantage of using the spectral ele-
ment method is that it achieves the same order of accuracy as the spectral transform
method while taking better advantage of distributed-memory computers.

In this paper we show results for icosahedral and hexahedral grids and in future

work we expect to report on the use of adaptive unstructured grids. The exponential
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accuracy of the spectral element method was illustrated using analytic solutions to
barotropic test cases which confirmed that the spectral element method yields at
least the same level of accuracy obtained with the spectral transform method. Using
baroclinic test cases, we demonstrated that our spectral element atmospheric model
gives similar results to spectral transform models; including the U.S. Navy’s NWP
model and the NCAR climate model. Finally, the performance of the spectral element
model was shown to scale linearly with increasing processors - a trait not shared by
spectral transform models. Through our comparison of NOGAPS and SEE-AM we
showed why the spectral element model will outperform spectral transform models
for the types of horizontal resolutions required by future NWP applications.

The results confirm that SEE-AM offers an attractive alternative strategy for
constructing future NWP and climate models on parallel computers. In order to
make SEE-AM competitive with operational NWP spectral transform models we are
extending the explicit Eulerian model to semi-implicit Eulerian and fully-implicit

semi-Lagrangian and we hope to report our findings in the future.
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Appendix
The atmospheric equations can be written in the following conservation form
dq
—+V.-F=8
5+ (9)
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where

T 0
U — 227 (yw — 2v) + ¢ — ux
q=| wv |, S(q) = —Q;J—sz(zu—xw)+¢g—;r—uy —%(qd)
Tw —2927 (zv — yu) + 95 — pz
w0 0
F=fi+gj+hk
E, j, k denote the Cartesian directional vectors, and the fluxes are
U T W
mu? + mo VU TUw
F= VU =\ m?+mp | A= TVW . (56)
WU TW Tw? + 7
mhu mhv TOw

The eigenvalues of Bai are

q
U+/3
U-Vo
A = U

U

U

where U = m - u and the maximum wave speed of the atmospheric equations is

Amax = U + /4.

9 Figure Captions

Figure 1 The contributions of the local element matrices are summed across all

elements in order to construct the corresponding global matrices; this is the
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global assembly procedure. The local element matrix values at the local grid
points (4, 3, 2, 1) of elements (E1, E2, E3, E4), respectively, are summed to
obtain the value of the global matrix at the global grid point G1. These local
grid points are in fact the exact same point which in the global indexing is

referred to as G1.

Figure 2 The equally-spaced sigma coordinate system used in the vertical discretiza-
tion. The prognostic variables reside at the full levels (solid lines) and the
diagnostic variables are at the half levels (dashed lines). No-flux boundary

conditions are used at the top and bottom of the atmosphere.
Figure 3 The icosahedral grid for a) n; =2 N =8 and b) ny =4 N =8.
Figure 4 The hexahedral grid for a) ny =4 N =8 and b) ny =8 N = 8.

Figure 5 The communication stencil required by the elements (P1,..., P9) in pro-
cessor PROC. N1,..., N9 represent the elements of the 8 neighboring proces-
sors (NBR). The dashed box represents the perimeter values that each processor

sends to its neighbors.

Figure 6 The simulation days per wallclock time as a function of processors, Nproc,
for the explicit NOGAPS and SEE-AM for T159 and N, = 24. Both models

use the maximum allowable time-step for SEE-AM.

Figure 7 The simulation days per wallclock time as a function of processors, Nproc,
for the semi-implicit NOGAPS, explicit NOGAPS, and SEE-AM for T159 and

Niey = 24. Each model uses its maximum allowable time-step.

Figure 8 Barotropic Cases 1, 2, and 3: The geopotential, ¢, normalized Ly error as

a function of polynomial order, NV, for the Williamson et al. shallow water tests
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1, 2, and 3 using a) icosahedral and b) hexahedral grids. The n; = 1 icosahedral
grid and nyg = 1 hexahedral grid are used and the results are reported for 12

days, 5 days, and 5 days for Cases 1, 2, and 3, respectively.

Figure 9 Barotropic Case 1: The geopotential,¢, normalized L, error as a function
of horizontal resolution, H, for the Williamson et al. shallow water case 1 after
12 days for SEE-AM (thick line), the Jakob-Chien et al. model (spectral trans-
form), the Heikes and Randall model (finite difference), and the Taylor et al.

model (spectral element). The SEE-AM model uses the ny =1 (N, = 6) grid.

Figure 10 Barotropic Case 2: The geopotential, ¢, normalized Ly error as a func-
tion of horizontal resolution, H, for the Williamson et al. shallow water case 2
after 5 days for SEE-AM (thick line), the Jakob-Chien et al. model (spectral
transform), the Heikes and Randall model (finite difference), the Taylor et al.
model (spectral element), and the Tomita et al. model (finite-difference). The

SEE-AM model uses the ny =1 (N, = 6) grid.

Figure 11 Barotropic Case 3: The geopotential, ¢, normalized L, error as a func-
tion of horizontal resolution, H, for the Williamson et al. shallow water case 3
after 5 days for SEE-AM (thick line), the Jakob-Chien et al. model (spectral
transform), the Heikes and Randall model (finite difference), the Taylor et al.
model (spectral element), and the Tomita et al. model (finite-difference). The

SEE-AM model uses the ny =1 (N, = 6) grid.

Figure 12 Rossby-Haurwitz Wave Number 4: The surface a) pressure (hPa), b)
temperature (K), ¢) zonal velocity (m/s), and d) meridional velocity (m/s) for

SEE-AM with H160 (ng = 20, N = 8) and N, = 24 for a 5 day integration.
Figure 13 Rossby-Haurwitz Wave Number 4: The surface a) pressure (hPa), b)
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temperature (K), ¢) zonal velocity (m/s), and d) meridional velocity (m/s) for

NOGAPS with T159 and N, = 24 for a 5 day integration.

Figure 14 Held-Suarez Test: Plots of the a) mean zonally-averaged zonal velocity
(m/s) and b) mean zonally-averaged temperature (K) for SEE-AM after 1200

days for H64 (ny = 8, N = 8) and Ny, = 20.

Figure 15 Jablonowski-Williamson Balanced Initial State: The normalized surface
pressure, m, Ly error as a function of days for SEE-AM H160 (ny = 20 and

N = 8) with 24 vertical levels.

Figure 16 Jablonowski-Williamson Baroclinic Instability: The minimum surface
pressure (hPa) as a function of days for the NASA (finite volume), GME (finite-
difference), NCAR (spectral transform), and SEE-AM (spectral element with
ng = 20 and N = 8) models using 26 vertical levels. (The data for the first

three models are courtesy of Christiane Jablonowski.)

Figure 17 Jablonowski-Williamson Baroclinic Instability: A zoomed-in view of Fig.

16.

10 Figures
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Figure 1: The contributions of the local element matrices are summed across all
elements in order to construct the corresponding global matrices; this is the global
assembly procedure. The local element matrix values at the local grid points (4, 3,
2, 1) of elements (E1, E2, E3, E4), respectively, are summed to obtain the value of
the global matrix at the global grid point G1. These local grid points are in fact the

exact same point which in the global indexing is referred to as G1.
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Figure 2: The equally-spaced sigma coordinate system used in the vertical discretiza-
tion. The prognostic variables reside at the full levels (solid lines) and the diagnostic
variables are at the half levels (dashed lines). No-flux boundary conditions are used

at the top and bottom of the atmosphere.
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a) b)

Figure 4: The hexahedral grid for a) ny =4 N =8 and b) ny =8 N = 8.
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Figure 5: The communication stencil required by the elements (P1,...

, P9) in pro-

cessor PROC. N1,..., N9 represent the elements of the 8 neighboring processors

(NBR). The dashed box represents the perimeter values that each processor sends to

its neighbors.
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Figure 9: Barotropic Case 1: The geopotential,¢, normalized L, error as a function
of horizontal resolution, H, for the Williamson et al. shallow water case 1 after 12
days for SEE-AM (thick line), the Jakob-Chien et al. model (spectral transform), the
Heikes and Randall model (finite difference), and the Taylor et al. model (spectral

element). The SEE-AM model uses the ny =1 (N, = 6) grid.
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Figure 10: Barotropic Case 2: The geopotential, ¢, normalized L, error as a function
of horizontal resolution, H, for the Williamson et al. shallow water case 2 after 5
days for SEE-AM (thick line), the Jakob-Chien et al. model (spectral transform),
the Heikes and Randall model (finite difference), the Taylor et al. model (spectral
element), and the Tomita et al. model (finite-difference). The SEE-AM model uses
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Figure 11: Barotropic Case 3: The geopotential, ¢, normalized L, error as a function
of horizontal resolution, H, for the Williamson et al. shallow water case 3 after 5
days for SEE-AM (thick line), the Jakob-Chien et al. model (spectral transform),
the Heikes and Randall model (finite difference), the Taylor et al. model (spectral
element), and the Tomita et al. model (finite-difference). The SEE-AM model uses

the ng =1 (N, = 6) grid.
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Figure 12: Rossby-Haurwitz Wave Number 4: The surface a) pressure (hPa), b)

temperature (K), ¢) zonal velocity (m/s), and d) meridional velocity (m/s) for SEE-

AM with H160 (ng = 20, N = 8) and N, = 24 for a 5 day integration.
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with 7159 and Ny, = 24 for a 5 day integration.
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Figure 14: Held-Suarez Test: Plots of the a) mean zonally-averaged zonal velocity
(m/s) and b) mean zonally-averaged temperature (K) for SEE-AM after 1200 days

for H64 (ny =8, N = 8) and Ny, = 20.
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Figure 15: Jablonowski-Williamson Balanced Initial State: The normalized surface
pressure, 7, Lo error as a function of days for SEE-AM H160 (ny = 20 and N = 8)
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Figure 16: Jablonowski-Williamson Baroclinic Instability: The minimum surface
pressure (hPa) as a function of days for the NASA (finite volume), GME (finite-
difference), NCAR (spectral transform), and SEE-AM (spectral element with ng = 20
and N = 8) models using 26 vertical levels. (The data for the first three models are

courtesy of Christiane Jablonowski.)
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Figure 17: Jablonowski-Williamson Baroclinic Instability: A zoomed-in view of Fig.

16.
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